The cosmopolitan *Candelaria concolor* gets its distinctive yellow colour from pulvinic acid derivatives. Corticolous on introduced *Quercus*, *Populus*, and *Betula*, the species is widespread in public parks and gardens in Australia and New Zealand.

1 mm
Bush Blitz surveys of the flora and fauna in southern parts of the Australian Capital Territory and nearby New South Wales (December 2013) and the East Kimberley region of Western Australia (May/June 2014), co-funded by the Australian Government and BHP Billiton, resulted in the discovery of new lichen taxa and new national and otherwise interesting records (Archer & Elix 2014; McCarthy 2014; McCarthy & Elix 2014; Elix 2015). Here, three species collected during Bush Blitz surveys are confirmed from Australia for the first time; 25 others are newly reported for the A.C.T., N.S.W. and/or W.A.

NEW RECORDS FOR AUSTRALIA

1. Aspicilia cinerea (L.) Körb., Syst. Lich. German. 164 (1855)

 Thallus pale greyish green or mid-grey to medium greenish brown, areolate, the areolae thin to rather thick, concave to plane, angular or irregular, usually uneven, \(K^+\) red (norstictic acid crystals visible in section), the thallus with or without a dark grey to blackish delimiting prothallus. Apothecia at first immersed in the thallus, with a black, concave to plane disc 0.4–1.4 mm wide. Mature apothecia becoming rather prominent and adnate with a thickish thalline margin. Ascospores simple, ellipsoid or broadly ellipsoid, \((6–)8\) per ascus, 15–22 \(\times\) 8–14 µm.

 This lichen appears to be moderately common and even locally abundant on exposed siliceous rocks at subalpine and alpine elevations in south-eastern mainland Australia. Elsewhere, it is known from Eurasia, North and South America, Africa and New Zealand.

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Scabby, summit area, 35°45'08"S, 148°54'35"E, alt. 1809 m, on exposed granite, P.M. McCarthy 4190, 4191 (part), 4192, 9.xii.2013 (CANB); • Scabby Lake, Mt Scabby, 35°44'26"S, 148°51'54"E, alt. 1598 m, on sheltered granite, P.M. McCarthy 4255, 12.xii.2013 (CANB); • below summit of Mt Bimberi, 35°39'27"S, 148°47'20"E, alt. 1882–1900 m, on granite, P.M. McCarthy 4291, 4292 (part), 12.xii.2013 (CANB); • Mt Murray, summit area, 35°41'26"S, 148°47'35"E, alt. 1800–1850 m, on sheltered granite in Eucalyptus pauciflora-dominated forest-scrub, P.M. McCarthy 4291, 9.xii.2013 (CANB).

New South Wales: • Central Western Slopes, c. 13 km SW of Orange, Mt Canobolas, below summit, 33°20'40"S, 148°58'56"E, alt. c. 1390 m, on weathered volcanic outcrop on heath, with scattered Eucalyptus and Acacia, P.M. McCarthy 4322 (part), 1.iv.2014 (CANB).

 Thallus crustose, diffuse and rather inconspicuous, coarsely granular or minutely warted, off-white to pale greenish grey, on tufted mosses overgrowing calcareous soil. Apothecia initially ±plane, becoming strongly convex or subglobose, 0.3–0.8 mm diam., superficial, pale to dark brown or dull black, epruinose, the margin at first rather thick, entire and distinct, internally pale brown to hyaline, becoming recurved towards maturity and merging with the hypothecium; hymenium 70–90 µm deep, amyloid (only the ascus walls), mainly hyaline but with vertical, olive to aeruginose streaks of pigment, \(K^–\), the paraphyses predominantly simple, 2–3 µm wide, in a gelatinous matrix, gradually or abruptly broadening to 4–5 µm wide apical cells that
lack pigmented caps; hypothecium 55–80 µm deep, dark olive-brown above, paler below, K−. Ascii narrowly clavate or clavate-cylindrical, 8-spored, 65–72 × 10–13 µm; ascospores hyaline, 3–5(–7)-septate, fusiform, usually straight, 22–34 × 4.5–7.5 µm, the perispore usually not apparent. This lichen grows on soil, peat, on living and moribund bryophytes or on soft calcareous rocks in North America, Europe, the South Shetland Islands, the Antarctic Peninsula, India and New Zealand.

SPECIMEN EXAMINED

New South Wales: • Mount Kosciuszko Natl Park, Blue Waterholes, cliff overlooking Caves Track, 35°37'35"S, 148°41'00"E, alt. 1186 m, on sheltered bryophytes growing on soil over limestone, P.M. McCarthy 4235, 11.xii.2013 (CANB).

Caloplaca cerina var. chloroleuca (Sm.) Th.Fr., Lichenogr. Scand. 1, 174 (1871)

Thallus crustose, thin, diffuse, granular, pale to medium grey or pale greenish grey, on a hemispherical moss cushion growing directly on limestone. Apothecia superficial, 0.36–0.88 mm diam., disc initially concave, becoming splanic to slightly undulate-convex, deep orange to rusty orange, medium orange-brown or with a pronounced greenish hue; paraphyses containing algae, persistent, at first comparatively thick, entire or crenulate or radially fissured, pale to medium grey or pale bluish grey, becoming thinner, rather flexuose, but the colour scarcely changing. Ascoconidium barrel-shaped, broadly ellipsoid or almost claviform, (11–)12–18–20 × 6–9(–10) µm (n = 40); septum 4–8 µm thick.

This lichen is usually from bryophytes and debris in northern-circumpolar regions, temperate and alpine Europe and North America, Macaronesia, North Africa and Central Asia. Although it was reported as the synonymous C. cerina var. chloroleuca from bryophytes in Nelson, New Zealand by Kondratyuk & Galloway (1994), that entity was later subsumed into a broadly circumscribed C. cerina (Ehrh.) Th.Fr., an exclusively bryophilous species in New Zealand (Galloway 2007). This lichen is usually from bryophytes and debris in northern-circumpolar regions, temperate and alpine Europe and North America, Macaronesia, North Africa and Central Asia. Although it was reported as the synonymous C. cerina var. chloroleuca from bryophytes in Nelson, New Zealand by Kondratyuk & Galloway (1994), that entity was later subsumed into a broadly circumscribed C. cerina (Ehrh.) Th.Fr., an exclusively bryophilous species in New Zealand (Galloway 2007).

The circumpolar to pantemperate C. cerina has sometimes been defined broadly to include C. stilllicidiorum (Wetmore 2007; Galloway 2007). However, doubts have been raised regarding their relationship (Fletcher & Launon 2009), and a recent molecular and morphological study of C. cerina and its allies distinguished the corticolous “C. cerina s. lat.” from “C. stilllicidiorum s. lat.” on bryophytes, plant debris, the bark of roots, dwarf bushes and, rarely, on rock (Sun et al. 2011), a conclusion endorsed by McCune (2012). That distinction is followed here and is supported by the fact that corticolous C. cerina in the southern A.C.T. (see below) usually has darker and greener thalli and amphithecia, as well as smaller ascospores [(10–)11–14(–15) × 4.5–6 µm (n = 40); septum 3–3.5–5 µm thick.

SPECIMEN EXAMINED

New South Wales: • Mount Kosciuszko Natl Park, Blue Waterholes, cliff overlooking Caves Track, 35°37'35"S, 148°41'00"E, alt. 1186 m, on sheltered bryophytes growing on soil over limestone, P.M. McCarthy 4235, 11.xii.2013 (CANB).

NEW STATE AND TERRITORY RECORDS

In Australia this mainly saxicolous species was previously known only from Tasmania (McCarthy 2015). It also occurs in North America, Europe, Central Asia, New Zealand and Antarctica.

SPECIMEN EXAMINED

Australian Capital Territory: • Namadgi Natl Park, entrance to Glendale Depot, 35°41'24"S, 149°00'21"E, alt. 876 m, on wooden sign-post, P.M. McCarthy 4206 part, 8.xii.2013 (CANB) [Det. J.A. Elia].

New South Wales: • Central Western Slopes, W face of Mt Canobolas, c. 13 km SW of Orange, 33°12'17"S, 148°58'37"E, alt. 1250 m, on weathered volcanic outcrop below summit, P.M. McCarthy 4320, 1.iv.2014 (CANB).

Known from Victoria and Tasmania (McCarthy 2015), this lichen also occurs in Europe, North America, New Zealand and Antarctica.

SPECIMEN EXAMINED

New South Wales: • Mount Kosciuszko Natl Park, Blue Waterholes, cliff overlooking Caves Track, 35°37'35"S, 148°41'00"E, alt. 1186 m, on bryophytes growing on sheltered limestone, P.M. McCarthy 4308, 11.xii.2013 (CANB) [Det. G. Kantvilas].

A pantemperate to boreal species previously known from Western Australia and South Australia, C. cerina is part of a small but very distinctive lichen community on and below mountain-tops in the southern A.C.T. These lichens grow on the narrow twigs of stunted and wind-swept snowgums (Eucalyptus pauciflora, Fig. 1) in a community dominated by Lecidella spp., Ramboldia spp., Caloplaca wilsonii S.Y. Kondr. & Kärnefelt and Candelariella xanthostigma (Arch.) Lettau (Table 1).

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Ginini, creek slope, 35°37'30"S, 148°46'11"E, alt. 1665 m, on twigs of Eucalyptus, P.M. McCarthy 4193 (part), 10.xii.2013 (CANB); • below summit of Mt Bimberi, 35°39'27"S, 148°47'20"E, alt. 1882–1900 m, on twigs of Eucalyptus pauciflora, P.M. McCarthy 4148 (part), 4149, 12.xii.2013 (CANB).

Previously reported from Tasmania (McCarthy 2015), this lichen is also known from Europe, North Africa, India and New Zealand.

SPECIMEN EXAMINED

New South Wales: • Mount Kosciuszko Natl Park, Blue Waterholes, rocky knoll overlooking Nichols Gorge Track, 35°37'35"S, 148°41'03"E, alt. 1210 m, on twigs of Eucalyptus stellulata, P.M. McCarthy 4276 (part), 4278, 11.xii.2013 (CANB).

5. Caloplaca flavoreubescens (Huds.) I.R. Laundon, Lichenologist 8, 147 (1976)

Known from Western Australia, South Australia, Queensland, New South Wales, Victoria, Tasmania and Norfolk Island (McCarthy 2015), this corticolous lichen also occurs in North America, Europe, Iran, China and New Zealand.

SPECIMEN EXAMINED

Australian Capital Territory: • Namadgi Natl Park, below summit of Mt Bimberi, 35°39'27"S, 148°47'20"E, alt. 1882–1900 m, on twigs of Eucalyptus pauciflora, P.M. McCarthy 4148 (part), 12.xii.2013 (CANB).

6. Circinaria caesiocinerea (Nyl. ex Malbr.) A.Nordin, S.Savic & Tibell, Mycologia 102, 1341 (2010)

In Australia this saxicolous lichen is currently known only from Victoria (McCarthy 2015). It is common in much of the Northern Hemisphere. Also known in South America and New Zealand.
SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Ginini, 35°31’47"S, 148°46’41"E, alt. 1665 m, on sheltered granite of scree slope, P.M. McCarthy 4188 (part), 4212, 10.xii.2013 (CANB); • Mt Scabby summit, 35°45’08”S, 148°54’35”E, alt. 1809 m, on exposed granite, P.M. McCarthy 4248, 9.xii.2013 (CANB).

New South Wales: • Central Western Slopes, W face of Mt Canobolas, c. 13 km SW of Orange, 33°12’17”S, 148°58’32”E, alt. 1250 m, on weathered volcanic outcrop below summit, P.M. McCarthy 4328, 1.i.x.2014 (CANB).

Occurs in New South Wales, Victoria and Tasmania (McCarthy 2015), and also in South Aus-

8. Lecanora saligna (Schrad.) Zahlbr., Flora Nyl., 48, 148 (1865)

The distribution of this predominantly pantemperate species includes South Aus-

9. Lecidea diducens (Schrad.) Zahnbr., Cat. Lich. Univ. (Schrad.) Zahlbr., 148 (1928)

A recently described endemic species, this lichen was known from Western Aus-

12. Micarea prasina Fr., Syst. Orb. Veg. 256 (1825)

This almost cosmopolitan species grows on bark, wood, plant debris and soil. It occurs in Queensland, Victoria and Tasmania.

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Murray, summit area, 35°49’34”S, 148°54’11”E, alt. 1800–1850 m, on twigs of Tasmannia xerophila, P.M. McCarthy 4152, 9.xii.2013 (CANB).

The distribution of this cosmopolitan lichen includes Western Australia, Queensland, New South Wales, Tasmania and Lord Howe Island (Elix 2011a, 2015).

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Murray, summit area, 35°41’26”S, 148°47’35”E, alt. 1800–1850 m, on exposed granite in Eucalyptus pauciflora-dominated forest-scrub, P.M. McCarthy 4124, 4173, 9.xii.2013 (CANB).

14. Myriospora smaragdula (Wahlenb. ex Ach.) Nägeli ex Uloth, Flora 44, 618 (1861)

Although this lichen is almost cosmopolitan in its global distribution, locally it has only been reported from Western Australia and South Australia (McCarthy 2015).

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Canberra, c. 4 km NNW of Capital Hill, Australian National Botanic Gardens, Section 186, on sandstone edging a road, P.M. McCarthy 4475, 31.iii.2015 (CANB).

A montane, silicolous lichen in the south of Western Australia, New South Wales and Victoria (Archer 2012; McCarthy 2015). Also known from southern South America, the Falkland Islands, South Africa, New Zealand and Antarctica.

SELECTED SPECIMENS EXAMINED

Australian Capital Territory: • Namadgi Natl Park, Mt Ginini, 35°31’47”S, 148°46’41”E, alt. 1665 m, on sheltered granite in scree slope, P.M. McCarthy 4180, 9.xii.2013 (CANB).

This is a common, limestone-inhabiting lichen in temperate to boreal regions of the Northern Hemisphere, including North America, Europe, Macaronesia, Central Asia and Japan. It also occurs in New Zealand and Tasmania (McCarthy 2015).

SELECTED SPECIMENS EXAMINED

New South Wales: • Mount Kosciuszko Natl Park, Blue Waterholes, cliff overlooking Caves Track, 35°37’35”S, 148°41’00”E, alt. 1186 m, on sheltered limestones, P.M. McCarthy 4170, 4245 (part), 11.xii.2013 (CANB); • loc. id., rocky knoll overlooking Nichols Gorge Track, 35°37’35”S, 148°41’03”E, alt. 1210 m, on exposed limestone, P.M. McCarthy 4305, 11.xii.2013 (CANB).
17. Protoparmelia pulchra Diederich, Aptroot & Sérus., in Aptroot et al., Biblioth. Lichenol. 64, 147 (1997).
This lichen, originally described from montane forest in Papua New Guinea, is also known from Western Australia, the Northern Territory, Queensland, New South Wales and Tasmania (McCarthy 2015).

SPECIMEN EXAMINED
Australian Capital Territory: • Namadgi Natl Park, Mt Scabby, summit area, Namadgi Natl Park, A.C.T., 35°45'08"S, 148°34'35"E, alt. 1809 m, on twigs of Eucalyptus pauciflora, P.M. McCarthy 4199 (part), 9.xii.2013 (CANB).

This species grows on rock in coastal and hinterland forest in the Northern Territory and eastern Qld (Elix 2011b). Also known from South America, Africa, southern and eastern Asia and the central Pacific Ocean.

SPECIMEN EXAMINED
Western Australia: • East Kimberley, Durack River Property, c. 42 km due S of Gibb River Road, near tributary of Horse Creek, gorg walls [Site P23], 16°13'03"S, 127°30'53"E, alt. c. 450 m, on sheltered sandstone, P.M. McCarthy 4474 (coll. A. Rao, R. Butcher & A. Start), 31.v.2014 (PERTH) [Det. J.A. Elix].

In Australia this species is known from the Northern Territory, South Australia, Queensland and Victoria (Elix 2011c; McCarthy 2015). It also occurs on the Juan Fernandez Islands in the south-eastern Pacific Ocean.

SPECIMEN EXAMINED
Western Australia: • East Kimberley, Durack River Property, c. 90 km due S of Gibb River Road, near tributary of Chamberlain River [Site P2], 16°37'08"S, 127°31'48"E, alt. c. 510 m, on sheltered sandstone, P.M. McCarthy 4464 (coll. A. Rao, R. Butcher & A. Start), 31.v.2014 (PERTH) [Det. J.A. Elix].

20. Scolicosporum umbrinum (Ach.) Arnold, Flora 54, 50 (1871)
A warm-temperate to circum-polar species in the Northern Hemisphere, this lichen also occurs in New Zealand, islands in the Indian Ocean, as well as New South Wales and Tasmania (McCarthy 2015).

SELECTED SPECIMENS EXAMINED
Australian Capital Territory: • Namadgi Natl Park, Mt Scabby, summit area, 35°45'08"S, 148°34'35"E, alt. 1809 m, on twigs of Eucalyptus pauciflora, P.M. McCarthy 4199, 9.xii.2013 (CANB); • Mt Murray, summit area, 35°41'26"S, 148°47'35"E, alt. 1665 m, on twigs of Eucalyptus, P.M. McCarthy 4176 (part), 9.xii.2013 (CANB); • Mt Ginini, 35°31'47"S, 148°46'41"E, alt. 1665 m, on twigs of Eucalyptus in scree slope, P.M. McCarthy 4197, 10.xii.2013 (CANB).

21. Thelenella brasiliensis (Müll.Arg.) Vain., J. Bot. 34, 293 (1896)
This inconspicuous pyrenolichen of siliceous rocks occurs in Brazil, Central America, the Caribbean, West Africa, southern Africa and China (Mayrhofer 1987), as well as Christmas Island and eastern Queensland (McCarthy 2015).

SPECIMEN EXAMINED
Western Australia: • East Kimberley, Durack River Property, c. 42 km due S of Gibb River Road, near tributary of Horse Creek, gorg walls [Site P23], 16°13'03"S, 127°30'53"E, alt. c. 400 m, on sheltered sandstone, P.M. McCarthy 4474 (part), 28.v.2014 (PERTH); • c. 40 km due S of Gibb River Road, tributary of Horse Creek, crater and gorge walls [Site P24], 16°12'17"S, 127°29'48"E, alt. c. 450 m, on sheltered sandstone, P.M. McCarthy 4468, 2.vi.2014 (PERTH).

This lichen is known from South and Central America, the Caribbean, U.S.A. (Florida), Algeria, southern Africa, the Arabian Peninsula, Japan, New Zealand and Queensland (Mayrhofer 1987).

SPECIMEN EXAMINED
New South Wales: • Central Western Slopes, Goobang Natl Park, c. 25 km E of Peak Hill, 32°49'58"S, 148°20'12"E, alt. 440 m, on damp, deeply shaded metamorphosed sandstone along bank of seasonal stream in Eucalyptus-Callictris woodland, P.M. McCarthy 4324, 2.vi.2014 (CANB).

23. Trapelia crystallifera Kantvilas & Elix, Biblioth. Lichenol. 95, 324 (2007)
This endemic lichen was already known from Western Australia, South Australia, New South Wales, Victoria and Tasmania (Kantvilas & Elix 2007; McCarthy 2015).

SPECIMEN EXAMINED
Australian Capital Territory: • Namadgi Natl Park, Brandy Flat Fire Trail, c. 1.5 km NE of Glendale Depot, 35°41'42"S, 149°01'04"E, alt. 995 m, on granitic soil in bank of road-cutting through sparse eucalypt-dominated forest, P.M.: McCarthy 4107, 13. xii. 2013 (CANB) [Det. J.A. Elix].

Known from Papua New Guinea, the Philippines, Taiwan, Queensland, New South Wales, Victoria and Tasmania (McCarthy 2015).

SELECTED SPECIMENS EXAMINED
Australian Capital Territory: • Namadgi Natl Park, Brandy Flat Fire Trail, c. 1.5 km NE of Glendale Depot, 35°41'42"S, 149°01'04"E, alt. 995 m, on granitic soil in bank of road-cutting through sparse eucalypt-dominated forest, P.M.: McCarthy 4107, 13. xii. 2013 (CANB) [Det. J.A. Elix].

Neofuscella subcrustulosa Elix, Mycotaxon 71, 450 (1999)
This rather inconspicuous endemic lichen was already known from Western Australia and South Australia (Elix 1999).

SPECIMEN EXAMINED
New South Wales: • Central Western Slopes, W face of Mt Canobolas, c. 13 km SW of Orange, 33°12'17"S, 148°38'37"E, alt. 1250 m, on weathered volcanic outcrop, P.M. McCarthy 4430, 1.iv.2014 (CANB) [Det. J.A. Elix].

Acknowledgements
I am grateful to Jack Elix and Gintaras Kantvilas for help with the identification of specimens.

References

Fletcher A; Laundon, JR (2009): *Caloplaca* Th. Fr. (1860). In Smith, CW; Aptroot, A; Coppins, BJ; Fletcher, A; Gilbert, OL; James, PW; Wolseley, PA (eds), *The Lichens of Great Britain and Ireland*: 245–273. British Lichen Society, London.

Table 1. Lichens on 5–10 mm diameter twigs of snowgum (*Eucalyptus pauciflora*) at elevations of 1600–1900 m in Namadgi National Park, A.C.T.

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amandinea punctata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baculifera xylophila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caloplaca cerina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caloplaca flavorubescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caloplaca wilsonii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candelariella xanthostigma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypogymnia lugubris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecidella destituta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecidella eclechochona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecidella xylodora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecidella sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menegazzia platytrema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micarea aff. lignaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pertusaria pertractata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protoparmelia pulchra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramboldia laeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramboldia stuartii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramboldia subnecia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scociciosporum umbrinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usnea inermis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usnea pycnoclada</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Snowgums near the summit of Mount Bimberi, A.C.T. (c. 1800 m alt.).
Additional lichen records from Australia 82. Queensland

Roderick W. Rogers
Queensland Herbarium, Mt Coot-tha Rd, Toowong, Queensland 4068, Australia

Abstract

Dirinaria leopoldii (Stein) D.D.Awasthi is reported for the first time from Australia, and 28 other species are listed as new records for Queensland.

Introduction

About half of Australia’s known lichen species occur in Queensland. The Queensland Herbarium (BRI) is nearly 150 years old, and holds significant lichen collections. Recent BRI acquisitions include species previously unknown from Queensland, and some previously unidentified or misidentified collections have proved to be species not yet reported from Queensland. AQ numbers (Acquisition Queensland) link to records on the BRI database, and allow full recovery of collection details. BRI numbers are now discontinued.

New record for Australia

1. Dirinaria leopoldii (Stein) D.D.Awasthi, Biblioth. Lichenol. 2, 89 (1975)

This species is also known from East Africa, India, Brazil, the southern U.S.A. and the Galápagos Islands.

Thallus foliose, up to 50 mm diameter, lobes white to grey or pink colouration from the medulla showing through the cortex; up to 1 mm wide; sorediate, soralial laminal, capitulate; medulla with red pigment in the upper part, ochraceous below; lower cortex black. Apothecia not known. Cortex K+ yellow; medulla K+ purple. Atranorin, tri-terpenoids, red K+ purple pigment, ochraceous K+ purple pigment, ± sekikaic acid derivative.

Dirinaria leopoldii is characterized by a pink to red medulla with a lower ochreous band, but no white layer, and laminal capitulate soralia (Swinscow & Krog 1975). The medulla of the other species of Dirinaria occurring in Australia is unpigmented except for D. sekikaica Elks, which has a medulla that is rarely orange toward the lobe tips.

SPECIMEN EXAMINED

Queensland: • roadside 1 km W of Goomeri, 26°10'29"S, 152°03'03"E, on bark of roadside tree in mown verge, R.W. Rogers 12314 & T.E. Albome, 27.vi.2014 (BN864735).

New records for Queensland

Unless otherwise indicated, the distribution data within Australia are taken from McCarthy (2014)

1. Candelariella aurella (Hoffm.) Zahlbr., Cat. Lich. Univ. 5, 790 (1928)

A widely distributed and perhaps cosmopolitan species, on rock, previously reported from South Australia, New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SPECIMENS EXAMINED

Queensland: • 20 km W of Vergemont H.S. (c. 130 km W of Longreach), site 339, 23°30'5, 142°28'E, residual plateau, open shrubland, V.J. Neldner & T.D. Stanley s.n., iv.1986 (AQ 716630); • Salvator Rosa National Park, 24°30'S, 147°30'E, on sandstone, M.E. Ballingall 1013, iv.1986 (AQ 694311); • Idalia National Park, near Old Idalia, 24°53'S, 144°43'E, R.W. Rogers 10466, viii.1995 (AQ 690645); • Round Mountain, 27°46'S, 152°57'E, on sandstone in E. crebra–E. citriodora woodland at forest margin, R.W. Rogers 10612, 4.i.2004 (AQ 646719).

An Australian endemic known from bark in Western Australia, the Northern Territory, South Australia, New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SPECIMEN EXAMINED

Queensland: • Matingara St, Chapel Hill, 27°29'31"S, 152°57'01"E, trunk of Roystonea regia in suburban garden, R.W. Rogers s.n., 03.vii.2006 (AQ 698797).

Cosmopolitan on arid zone soils, including locations in Western Australia, South Australia, Victoria, Tasmania, New South Wales and the Northern Territory.

SELECTED SPECIMENS EXAMINED

Queensland: • Gigi Paddock, Mt Margaret Station, 30 km SW of Eromanga, study site 4, 3.7 km from Poison Tank, 26°47'5, 143°24'6, E.M. Tozer & M.G. Tozer s.n., 10.vi.1995 (AQ 685526); • Eight Mile Paddock, Thylungra Station, 100 km NW of Klippie, Study site 3, 2.14 km from McGrath’s Bore, 25°55'5, 143°19'6, E.M. Tozer & M.G. Tozer s.n., 18.x.1995 (AQ 716837); • Idalia National Park, about 5 km W of homestead, 24°51'S, 144°41'E, on soil, R.W. Rogers 10470, viii.1995 (AQ 647625); • c. 50 km W of Morvern, 26°24'4'5, 147°31'03"E, on soil in poplar box woodland, R.W. Rogers 10736, 23.vii.2004 (AQ 648483); • Woodland 4 km E of Goondiwindi, 28°29'S, 150°21'35"E, on soil in poplar box, R.W. Rogers 10785, 23.ix.2004 (AQ 648486).

Subcosmopolitan, widely distributed on exposed arid rocks in Western Australia, South Australia, New South Wales, and the Australian Capital Territory.

SPECIMEN EXAMINED

Queensland: • 95 km W of Windorah, 9 km NW of Canterbury, 25°20'S, 141°50'E, tall open shrubland of Acacia shirleyi and A. aneura, on rock, V.J. Neldner 4410, 18.v.2008 (AQ 792382); • Rocks State Forest, 18 km WSW of Mundubbera, 25°38'31"S, 151°7'33"E, woodland of Corymbia citriodora on sandstone outcrop, P.I. Forster 39049, 30.viii.2009 (AQ 818947); • Road to Blackdown Tableland (State Forest 175), 30 km SE of Blackwater, 23°45'S, 149°07'E, 600 m alt., dry sclerophyll forest above escarpment, on semi-exposed boulder, H. Streimann 52250, 22.vii.1993 (AQ 696191).

Cosmopolitan on dry or semi-arid soil in Western Australia, South Australia, Victoria, Tasmania, New South Wales, the Australian Capital Territory and the Northern Territory.

SPECIMEN EXAMINED

Queensland: • Idalia National Park, near Old Idalia HS, on seasonally waterlogged soil, bare soil in very sparse shrubland, 24°53'5, 144°4'E, R.W. Rogers 10471, 1997 (AQ 647626); • Glenlyon Rd near Glenlyon Dam, 27.492°S, 152.925°E, on eroded soil, R.W. Rogers 11422, 21.01.2008 (AQ 752425).

Occurs on bark in East Africa, Angola, Costa Rica and Australia, previously known in Australia from western New South Wales.

SPECIMEN EXAMINED

Queensland: • beside Warrego Highway, about 32 km W of Mitchell, 26°48'47"S, 147°40'18"E, on bark of Pouteria continifolius on a dry ridge top, R.W. Rogers 12213, 25.xi.2012 (AQ 863789).
An Australian endemic, widely distributed in Southern Australia, previously reported from Western Australia, South Australia, New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SPECIMEN EXAMINED

8. Menegazzia conica P.James, in James & Galloway, Fl. Australia 54, 312 (1992)
Previously known only from twigs and bark of rainforest trees in north-eastern New South Wales.

SPECIMEN EXAMINED
Queensland: • Springbrook Plateau, on track to “Best of All Lookout”, in rainforest on cliff edge 28°14’S, 153°15’E, 1600 m alt., G.N. Stevens 4257, 7.x.1983 (AQ 6892236).

Previously known only from rainforest canopies in north-eastern New South Wales.

SPECIMEN EXAMINED
Queensland: • “3 Mile Gulley”, W branch of Canungra Creek, Lamington National Park, fallen branches in temperate rainforest, 28’15’S, 153°10’E, 1010 m alt., P.Merrotsy s.n., 28.i.1986 (AQ 689213).

Widespread on bark and twigs in moister areas in southern Australia, previously reported from Western Australia, Victoria, Tasmania, the Australian Capital Territory and New South Wales.

SPECIMENS EXAMINED
Queensland: • Southern Moreton Bay, in mangrove-covered island, 27°50’S, 131°1’E, on Ceriops tagal twig, G.N. Stevens 2500, 12.vi.1978 (AQ 689235); • Border Track, 5 km from O’Reilly’s Guest House, Lamington National Park, 28°15’S, 153°08’E, 1000 m alt., R.W. Rogers 8015 & P. Merrotsy, 28.i.1986 (AQ 689213).

11. Notoparmelia cunninghamii (Cromb.) A.Crespo, Ferencova & Divakar, Lichenologist 46, 63 (2014)
A species of cool southern land masses including South America and New Zealand; also Western Australia, South Australia, New South Wales, Victoria and Tasmania.

SPECIMENS EXAMINED
Queensland: • 8 km E of Mt Mowbullan, Bunya Mtns, 26°5’S, 151°3’E, bark of tree in low roadside scrub, c. 600 m alt., R.W. Rogers 8981 & K. Kalh, 15.vii.1988 (AQ 690608); • State Forest 1667 approx. 5 km from Hampton on left of road 27°53’S, 152°04’E, M.E. Ballingall & G.R. Scott s.n., 3.iii.1985 (AQ 691708).

An Australian endemic previously found on wood and bark in Western Australia, South Australia, Victoria and New South Wales.

SPECIMENS EXAMINED
Queensland: • Donnybrook, c. 25 km N of Brisbane, 27°00’S, 153°03’E, on bark of fig tree near mangroves, R.W. Rogers 1851, 26.i.1972 (AQ 690329); • Kremlow Rd, Strathpine, 27°17’S, 152°39’E, on bark of Ficus, R.W. Rogers 6384 & C. Scarlett, no date (AQ 690532); • Springbrook-Numinbah-Nerang intersection, 28°07’S, 153°15’E, on shaded rocks in the bed of the Nerang River, R.W. Rogers 2965, no date (AQ 690530); • Girraween National Park, Castle Rock track, woodland of Eucalyptus gymminna, on branches of young Callitris, P.I. Forster 34986, no date (AQ 813439).

Known from soils in Africa, Asia and North America, with previous Australian records from Western Australia and South Australia.

SPECIMEN EXAMINED
Queensland: • Summit of Grey Range, 26°37’40”S, 143°57’00”E, on soil in arid woodland, R.W. Rogers 10716, 24.vii.2004 (AQ 648585).

Known from acid rocks in arid zones of Africa, Asia and North America, and previously from Western Australia, South Australia and the Northern Territory.

SPECIMEN EXAMINED
Queensland: • Idalia National Park, ridge 1 km W of Park Office, 24°53’S, 144°46’E, on rocky outcrop, R.W. Rogers 10549 (AQ 647651).

Cosmopolitan on arid soils, and previously known from the Northern Territory, South Australia and New South Wales.

SPECIMENS EXAMINED
Queensland: • Idalia National Park, c. 5 km W of the Park Office, 24°53’S, 144°46’E, on soil in mulga woodland, R.W. Rogers 10500, 12.ii.1996 (AQ 647652); • E of Roma 26°35’S, 149°01’E, on soil in poplar box woodland, R.W. Rogers 10679, 6.vii.2004 (AQ 648588, 648589); • about 5 km E of Jondaryan, 27°22’S, 151°36’E, on soil in a Casuarina-Acacia woodland, R.W. Rogers 10655, 15.iv.2004 (AQ 647001).

Subcosmopolitan, previously known in Australia from South Australia, New South Wales, the Australian Capital Territory and Tasmania.

SPECIMENS EXAMINED

Previously known from New Zealand and New South Wales.

SPECIMEN EXAMINED
Queensland: • Lamington National Park, near Toolana Lookout, Main Border Track in rainforest, 28°17’S, 153°09’E, windfall from canopy, D. Halkd Q3380, vii.1999 (AQ 490923).

Previously known from New Zealand and New South Wales.
SPECIMENS EXAMINED

Distribution: Occurring on all continents, and previously known in Australia from New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SELECTED SPECIMENS EXAMINED
Queensland: • about 2 km NW of Yarraman, beside the d’Aguilar Highway, 26°49’27”S, 151°57’58”E, 650 m alt., R.W. Rogers 11781, 08.vi.2008 (AQ 754887); • Mt Glorious Rd, about 2 km past Enoggera Reservoir, 27°25’E, 152°52’E, on ironbark trunk, R.W. Rogers 3345 & C. Beasley, 8.v.1975. (AQ 684319); • Entrance to Slaughter Falls, Mt Coot-tha, 27°34’25”S, 151°49’58”E, 650 m alt., P. Mernoty 201, 12.v.1985. (AQ 804224); • Lamington Plateaux, 2 km south of Binna Burra on the Tullawallal track, c. 300 m from the turnoff on the Border Track, on bark in rainforest, E.M. Ross s.n., 27.viii.1987 (AQ 716607).

Known from islands in the Indian and Pacific Oceans, and in Australia from northern New South Wales.

SPECIMENS EXAMINED
Queensland: • Mt Hyppipamee National Park, on road from Atherton to Kennedy Hwy W of Malanda, 17°25’33”S, 145°18’12”E, simple notophyll vine forest, on bark, K. Takahashi 0681810, 18.viii.2006 (AQ 797205); • Robert’s Plateau, 28°1’S, 153°0’E, without collector or date (AQ 804223); • Lamington National Park, Picnic Rock, Sunshine Falls, near O’Reilly’s Guest House 28°15’S, 153°09’E, c. 1000 m alt., P. Merrotsy 201, 12.v.1985. (AQ 804224); • Lamington Plateaux, 2 km south of Binna Burra on the Tullawallal track, c. 300 m from the turnoff on the Border Track, on bark in rainforest, E.M. Ross s.n., 27.viii.1987 (AQ 716607).

Known from rocks in Australia and New Zealand, with previous records from Western Australia, South Australia, New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SPECIMENS EXAMINED
Queensland: • Stanthorpe-Texas road at Spring Creek, 13 km from Stanthorpe, 28°40’S, 151°49’E, on granite, M.E. Ballingall 799, 14.xi.1982 (AQ 694413); • Numinbah Valley, Nerang Creek, 28°00’S, 153°01’E, R. Ross s.n., 9.vi.1986. (AQ 734111); • Beside Rosewood-Laidley road, c. 3.5 km E of Laidley, 27°39’38”S, 152°25’17”E, c. 300 m alt., on rock outcrop in eucalypt woodland, R.W. Rogers s.n., 22.ii.2011. (AQ 832377).

Known from arid-zone rocks in Australia and South Africa, with previous Australian records from New South Wales and the Northern Territory.

SPECIMEN EXAMINED

Endemic to southern and central Australia, previously reported from rocks in arid to sub-arid regions in Western Australia, South Australia, the Northern Territory, New South Wales, the Australian Capital Territory and Victoria.

SPECIMENS EXAMINED

Endemic to southern Australia, previously reported from Western Australia, South Australia, New South Wales and Tasmania.

SPECIMEN EXAMINED

Known from Australia and South America, with previous Australian records from arid rocks in Western Australia and New South Wales.

SPECIMEN EXAMINED

An Australian endemic growing on dry soil; previously reported from New South Wales.

SPECIMEN EXAMINED
Queensland: • creek bank, c. 40 km E of Goondiwindi, 28°41’4”S, 151°08’4”E, eroded soil in Callitris-Eucalyptus woodland, R.W. Rogers 11445, 08.1.2008. (AQ 755706).

Australian endemic, on dry soil, and previously reported from Western Australia, South Australia, New South Wales and Victoria.

SPECIMEN EXAMINED

On rock or soil in Africa, Australia and New Zealand. Previously known from Western Australia, South Australia, the Northern Territory, New South Wales, the Australian Capital Territory, Victoria and Tasmania.

SPECIMENS EXAMINED

References

Four Tasmanian lichens new to New Zealand

Lars R. Ludwig
Department of Botany, University of Otago, Dunedin, New Zealand
e-mail: lars.ludwig@botany.otago.ac.nz, lars-ludwig@gmx.de

Gintaras Kantvilas
Tasmanian Herbarium, PO Box 5058, UTAS LPO, Sandy Bay, Tasmania, Australia 7005.
e-mail: Gintaras.Kantvilas@tas.gov.au

Abstract

Four crustose lichen species are reported for New Zealand for the first time: *Jarmania tristis* Kantvilas, *Mycoblastus kalioruber* Kantvilas, *Pertusaria flavoexpansa* Kantvilas & Elix and *Pseudoramonia richae* Kantvilas & Vézda. All four species were previously considered Tasmanian endemics. The *Jarmania tristis* and *Pseudoramonia richae* specimens are the first representatives of their genera in New Zealand.

Introduction

Endemism can be difficult to measure when dealing with poorly known groups of organisms and where the regional biota has been explored to varying degrees. Lichens provide an excellent example of that, and apparent “hotspots” of endemism might simply be a function of local activity (Kantvilas 2008). For example, when the first edition of the New Zealand Lichen Flora was published (Galloway 1985), about 40% of the species were cited as endemic only because they had not been recorded from anywhere else. The interest in lichens inspired (or supported by that) Flora soon led to the discovery of many putative New Zealand endemics in other regions, in particular Tasmania (e.g. Kantvilas et al. 1985; Kantvilas & James 1987, 1991). More recently, as a result of the intensive lichenological exploration of Tasmania (chiefly by the second author but also others), the number of Tasmanian endemics increased from 10.5% of the total in 2005 to 11.2% in 2015 (see Kantvilas 2012). The challenge has thus gone out to workers everywhere to find in their territories species thought to be endemic elsewhere. This paper reports four such discoveries for New Zealand.

Material and methods

All material was collected by the first author from New Zealand’s South Island or Stewart Island. Identification (or confirmation of identification) was undertaken on duplicate specimens sent to the second author. Voucher specimens were deposited in OTA, CHR and HO.

Photographic documentation of the New Zealand specimens was carried out by the first author using a dissecting microscope with integrated digital camera (Leica EZ4D). All images may be freely reproduced for educational and non-commercial purposes, provided this paper is cited in full as the source.

NEW RECORDS FOR NEW ZEALAND

Jarmania tristis is characterized by its yellowish, byssoid thallus that contains grayanic and usnic acids, immarginate, yellowish grey to blackish apothecia, *Bacidia*-type asci and indistinctly multiseptate, filiform ascospores (see Kantvilas 1996 for a complete description). It is locally abundant in cool temperate rainforest in Tasmania where it is most frequently seen on the undersides of inclined small trunks and limbs in the shaded understorey. Recently it has also been found in Victoria (Elix et al. 2009). It is here recorded from one New Zealand locality, the Garden Mount Track on Stewart Island, where it grows on an old kamahi tree directly along the track. It occurs on the sparsely vegetated overhanging side of the trunk, where the bright sulphur-yellow colour of the thallus (Figs 1–4) stands out from metres away. The precise location has not been recorded (by GPS), but it is within 500 m of the coordinates given below. The specimen was collected during a field trip of the 27th John Child Bryophyte and Lichen Workshop held in Oban in November 2012.

SPECIMEN EXAMINED

New Zealand: *Stewart Island*: • Garden Mount Track, 46°52’S 168°07’E, 50–150 m alt., under hang on bark of old kamahi tree, *Lars Ludwig* s.n., 24.xii.2012 (CHR, HO, OTA 064267).

Mycoblastus kalioruber is a corticolous, wet forest and heathland species, currently known from Tasmania and Victoria. In common with some other superficially similar species, viz. *M. coniophorus* (Elix & A.W.Archer) Kantvilas & Elix and *M. dissimulans* (Nyl.) Zühlbr., it contains perlatic acid, but is easily distinguished by the distinctive K+ blood-red reaction of the hypothecium in 10% KOH (Kantvilas 2009). Development of that reaction in a hand-cut section of an apothecium is illustrated in Fig. 5. Image a was taken before application, image b immediately afterward, and images c and d in c. 20-second intervals thereafter. The reaction itself is instantaneous, but a coverslip slows down the diffusion of the KOH towards the centre of the section.

The single known New Zealand locality, the Denniston Plateau near Westport, is in dense, low manuka scrub. The site is heavily threatened by the open-cast coal mining proposed by Bathurst NZ Ltd, and is likely to be destroyed in the near future.

SPECIMEN EXAMINED

New Zealand: *West Coast*: • Denniston Plateau near Westport, 41°46’18.5”S, 171°47’08.5”E, 700 m alt., on manuka scrub c. 1.2 m tall, *Lars Ludwig* s.n., 10.x.2013 (HO, OTA 064251).

Pertusaria flavoexpansa is characterized by a pale yellow, crustose thallus that overgrows soil, pebbles, rocks, low shrubs and dead plant matter in mountainous environments. Its apothecia are immersed in gall-like verrucae, and the asci contain a single, thick-walled (5–10 µm), large (30–40 µm × 40–84×–112 µm) spore. The main secondary metabolites are usnic acid and 5-O-methylusnic acid; see Kantvilas & Elix (2008) or Archer (2012) for a full description.

The species is widespread and common in the Tasmanian highlands. The first New Zealand collections were made during the Denniston Plateau BioBlitz in March 2012, which was an attempt to persuade the government not to grant resource content to Bathurst NZ Ltd’s proposal for an open-cast coal mine in the area, by providing evidence of the unique and high biodiversity of the plateau. The species is very abundant on the plateau, and gives a creamy-yellow tinge to areas up to several square metres in extent, where it encrusts dead grass and rotting wood in fully exposed sites. The black surface of the apothecia is often strongly eroded, so that the pale spores and asci are fully exposed, which gives them the appearance of a clutch of insect eggs (Fig. 7). Occasionally the exposed spores are even transversally abraded, providing views inside the spore and showing the extremely thick spore walls (Fig. 8). Another noteworthy observation is that the lignicolous Denniston specimens are covered with dense black aggregations of pycnidia (Fig. 6), but often lack mature apothecia. A further collection from central Stewart Island suggests that the species may be more widespread in New Zealand.

SPECIMENS EXAMINED

New Zealand: *West Coast*: • Wharearea Mine area, Denniston Plateau near Westport, c. 41°46’S 171°47’E, c. 650 m alt., on dead grass litter, apothecia strongly eroded, spores exposed, *Lars Ludwig* s.n., 03.iii.2012 (CHR, OTA 064277); • loc. id., c. 41°46’S 171°47’E, c. 650 m alt., semi-exposed on rotting wood just South of “Lake Brazil”, *Lars Ludwig* s.n., 03.iii.2012 (CHR, OTA 064277).
The first author is grateful for scholarship funding by the University of Otago, and also thanks John B. Steel for organising the Stewart Island John Child workshop, as well as Sue Maturin and Dr David Glenny for taking him to the Denniston Plateau. The Department of Conservation is thanked for providing collecting permits.

Acknowledgements

The first author is grateful for scholarship funding by the University of Otago, and also thanks Prof. Jack Elix for the initial chemical analysis of a P. richeae sample. He also thanks John B. Steel for organising the Stewart Island John Child workshop, as well as Sue Maturin and Dr David Glenny for taking him to the Denniston Plateau. The Department of Conservation is thanked for providing collecting permits.

References

Figure 2. Grey apothecia in the thallus centre of Stewart Island *Jarmania tristis*. The brown spots are decayed, eroded apothecia where the hypothecium is exposed.

Figure 3. *Jarmania tristis* from Stewart Island. Dark epruinose apothecia.

Figure 4. *Mycoblastus kalioruber*, habit in Denniston Plateau.

Figure 4. *Mycoblastus kalioruber*, detail of habit in Denniston Plateau.
Figure 5. Hypothecium of *Mycoblastus kalioruber*. Micrograph sequence of development of the distinctive 10% K⁺ blood-red colour reaction (see text for explanation).

Figure 6. Habit of *Pertusaria flavoexpansa* on wood from Denniston Plateau. The apothecia are the small (<0.5 mm), blackish spots with a clear circular outline. The large (>1 mm) diffusely outlined black spots seem to be aggregations of pycnidia.

Figure 7. *Pertusaria flavoexpansa*, habit on rotting grass on Denniston Plateau. The apothecia are strongly eroded, exposing the large pale spores and asci, which resemble a clutch of insect eggs.

Figure 8. Close-up of eroded apothecia of *Pertusaria flavoexpansa*, showing transversally abraded spores/asci with very thick walls.
Figure 9. Habit of *Pseudoramonia richeae* from Blue Mts, New Zealand.

Figure 10. Close-up of isidia of *Pseudoramonia richeae* from Blue Mts, New Zealand.

Figure 11. Habit of the compact micro-cushion growth form of *Pseudoramonia richeae*.

Figure 12. Section through compact micro-cushion of *Pseudoramonia richeae*, showing densely aggregated isidia.
Pertusaria puffina A.W.Archer & Elix was first described from material collected on Lord Howe Island (Archer & Elix 1994). Since then the species has been reported from mainland Australia (Archer 2004), Papua New Guinea (Elix et al. 1997), Thailand (Mongkolsuk et al. 2011) and India (Rai et al. 2014), but not New Zealand (Galloway 1985, 2007 and de Lange et al. 2012). A search of mangroves in northern New Zealand discovered three populations in the Kaipara Harbour (Fig. 1), and a search through the unidentified *Pertusaria* in AK found a collection from the inner Hauraki Gulf (Fig. 1).

Materials and methods

Specimens were examined with standard microscopic techniques. Chemical constituents were identified with thin-layer chromatography (Culberson 1972, White & Hitchmough 2012) and considering that they are few, small, and geographically near to each other, we submit that the most appropriate threat status is “Nationally Endangered”, with the qualifier “Data Poor” (Townsend et al. 2008).

SPECIMENS EXAMINED

North Island: • Mataia Bay, Kaipara Harbour, 36°29′25″S, 174°25′34″E, 2 m alt., growing on Avicennia marina subsp. australasiaica, O. E. & C. Reynolds, 16.vii.2013 (UNITEC); • loc. id., 2 m alt., growing on *Metrosideros excelsa*, O. E. & C. Reynolds, 28.viii.2014 (UNITEC); • loc. id., 2 m alt., growing on *Vitex lucens*, O. E. & C. Reynolds, 28.viii.2014 (UNITEC); • Maitai Wharf, Kaipara Harbour, 36°29′38″S, 174°25′27″E, 1 m alt., growing on *Metrosideros excelsa*, D.J. Blenkinsop, 2.x.2014 (UNITEC); • Umupuia Reserve, Hunua Ecological District, 36°34′5″S, 175°05′45″E, 45 m alt., growing on *Belichsmiedia tawa*, D.B. Rogers, 21.ix.1996 (AK); • Umupuia Beach, Hunua Ecological District, 36°34′52″S, 175°04′52″E, 2 m alt., growing on *Metrosideros excelsa*, C. Reynolds, 14.xi.2015 (UNITEC).

Acknowledgements

We thank Gill and Kevin Adshead for site access and support, Dr Alan Archer and Professor Jack Elix for confirming the chemistry and identity of our initial specimen, Dr Peter de Lange for comments on the manuscript, and the Herbarium of the Auckland Institute and Museum (AK) for access to specimens.

References

Mongkolsum, P; Buurangk, P; Ployiam, W; Yongsawarat, K; Phoksae, S; Searim, D; Nirongbutr, P; Sangwisut, T; Sodamuk, M (2011): Lichens in Mangrove forest at Ban Num Chiew Muang District and Black Sand beach Laem Ngop District, Trat Province. Proceedings of the 35th Congress on Science and Technology of Thailand (STT37). 10–12 October 2011, Bangkok.

Figure 1. Sites where *Pertusaria puffina* has been collected in New Zealand (triangles).

Figure 2. Soralia of *Pertusaria puffina*, Mataia Bay, Kaipara Harbour. Bar = 2 mm.

Figure 3. Habitat of *Pertusaria puffina*, Mataia Bay, Kaipara Harbour.
Two new species of Rinodina (Physciaceae, Ascomycota) from Fiji and Australia

John A. Elix
Research School of Chemistry, Building 137, Australian National University, Canberra, A.C.T. 0201, Australia
email: John.Elix@anu.edu.au

Mireia Giralt
Departament de Bioquímica i Biotecnologia (Area de Botànica), Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, Marcel·lí Domingo nº 1, 43007, Tarragona, Catalonia, Spain
e-mail: mireia.giralt@urv.ca

Abstract
Rinodina fijiensis Elix & Giralt from Fiji and R. oxydatella Elix & Giralt from Fiji and Australia are described as new to science.

Introduction
Fiji comprises an archipelago of more than 300 islands, with a total land area of approximately 18,000 square km, located at 15°42’S–20°02’S and 176°53’E–178°12’E. The two major islands are Viti Levu and Vanua Levu, where the majority of the population lives. The islands are mountainous, with peaks up to 1324 m high, and are covered with thick tropical forests. The climate is tropical and warm all year round with variable rainfall. Annual rainfall on the main islands is between 2000 and 3000 mm on the coast, and up to 6000 mm in the mountains.

Lichens were first described from Fiji by Krombholz (1873), but he did not refer to Rinodina. Subsequent reports of Fijian lichens by Zahlbruckner (1896) and more recently by McCarthy & Elix (1998) and Lumbsch (2011) failed to record any collections of Rinodina despite Fiji’s reputation as a hotspot for biodiversity. In this paper, we describe two new species of Rinodina from Fiji, one of which also occurs in Australia.

The new species
Rinodina fijiensis Elix & Giralt, sp. nov. Fig. 1
MB 812399
Similar to Rinodina xanthomelana Müll.Arg., but differs in the thallus becoming areolate and subsquamulose, in having persistently plane discs, broader ascospores, a hymenium with numerous oil paraphyses and in containing arthothelin rather than thiomelin.

Type: Fiji, Viti Levu, Nausori Highlands, Nadi-Sigatoka Road, western escarpment, 0.3–0.8(–1) mm wide, up to 0.15 mm thick, concave with raised margins, ±loosely attached to the substrate; apothecia 0.1–0.3 mm wide, lecanorine or cryptolecanorine at length becoming lecideine, 1–3 per areole, immersed to subimmersed; parasporae 1–1.5 µm.

Hymenium: 75–100 µm thick, colourless, not inspersed; paraphyses 1–2 µm thick, olive-brown then brown, ellipsoid, 1-septate, smooth, persistent; hypothecium 12–15 µm thick, pale brown to brown

Asci of the type, 15–21 × 8–12 µm, not constricted at the septum, ontogeny of type-A torus present in only mature ascospores; outer spore wall smooth. Pycnidia rare, immersed; conidia bacilliform, 5–6 × 1–1.5 µm.

Chemistry: Thallus K+ yellow, P+ pale yellow, C+ orange, UV+ orange; containing atranorin (minor), zeorin (minor) and arthothelin (major).

Etymology: The species is named after the type locality.

Remarks
In many respects this new species closely resembles R. xanthomelana. Both have immersed to subimmersed, lecanorine to cryptolecanorine apothecia and similar-sized Pachysporaria-type ascospores, and both contain zeorin and xanthones. However, R. xanthomelana lacks atranorin, and contains thiomelin and its congenors rather than arthothelin. Furthermore, the thallus of R. xanthomelana is crustose, thin, rimose or membranaceous, and very rarely becomes areolate, whereas that of R. fijiensis is thick, crustose and areolate to subsquamulose. In addition, R. fijiensis has broader spores, 8–12 µm versus 7.5–10.5 µm, and larger apothecia, 0.1–0.6 mm wide versus 0.1–0.3 mm, and has oil paraphyses scattered throughout the hymenium. Oil paraphyses are rare or absent in Rinodina xanthomelana. Although oil paraphyses are more common in the related R. thiomela (Nyl.) Müll.Arg., that species differs from R. fijiensis in having adnate to sessile apothecia, larger ascospores, 20–34 × 11–17 µm, and in containing thiomelin and its congenors rather than arthothelin and atranorin (Elix 2011).

At present the new species is known from only the type collection, where associated species include Coccocarpia palmicola (Spreng.) Arv.& D’J.Galloway, Dirinaria aplannata (Fée) D.D.Awasthi, Lepraria finkii (B.de Lesd.) R.C.Harris, Rinodina oxydatella, Parmotrema reticulatum M.Choisy and Xanthoparmelia scabrosa (Taylor) Hale.

Rinodina oxydatella Elix & Giralt, sp. nov.
MB 812400
Similar to Rinodina oxydata (A.Massal.) A.Massal. but lacking the aureginose N+ red pigment in the proper exciple.

Type: Australia, Queensland, Mt Walker, 15 km S of Hughenden, 20°55’S, 144°14’E, 400 m alt., on shaded boulder in dense Eucalyptus woodland on moderate slope, H. Steirmann 37291, 25.vi.1986 (holotype – CANB).

Thallus subsquamulose to areolate-crustose, up to 5 cm wide, the areoles contiguous to dispersed, 0.5–1(–1.5) mm wide, up to 0.15 mm thick, concave with raised margins or becoming sublobate with ascending margins, ±loosely attached to the substrate; upper surface pale whitish green to grey-white or grey-brown, smooth, shiny; prothallus brown, 1–3 per areole, immersed to subimmersed, scattered or contiguous; disc dark brown to yellow-green, smooth, shiny; prothallus blackish or not apparent; vegetative paraphyses absent; epinecral layer present, up to 5 µm thick; cortex 30–50 µm thick, composed of rounded cells 5–10 µm diam., upper part containing crystals of atranorin; algal layer 60–80 µm thick; medulla thin, white, I–, lacking crystals; photobiont cells 8–15 µm diam. Apothecia 0.1–0.6 mm wide, lecanorine or cryptolecanorine, 1–3 per areole, immersed to submersed, scattered or contiguous; disc dark brown to thallus, brown, epruinose, persistent plane; thalline margin concolorous with thallus, very thin, entire, not prominent, with age; proper margin thin, not prominent, concolorous with disc. Hymenium 12–15 µm thick, pale brown to brown K–, N–. Hypothecium 40–50 µm thick, colourless to pale yellow-brown. Hymenium 60–80 µm thick, colourless, not inspersed; paraphyses 1.5–1.7 µm wide, simple to sparingly branched; capitulate, with brown apices 3–5 µm wide, with oil paraphyses scattered throughout the hymenium; asci of the Lecanora-type, with 8 or fewer spores. Ascospores 1-septate, olive-brown then brown, elliptoid, Juvenile spores Pachysporaria-type, mature spores Mischoblastula-type, (15–)16–21 × 8–12 µm, lumina angular to usually triangular, not becoming rounded, not constricted at the sporis, oval to subglobular, 4–5.5 × 1–1.5 µm.
Chemistry: Thallus K+ yellow, P+ pale yellow; containing atranorin (major).

Etymology: The species is named for its similarity to *Rinodina oxydata*.

Remarks

This saxicolous taxon is characterized by the loosely attached, subsquamulose areoles with ascending, ±sublobate margins, the presence of atranorin, the immersed to subimmersed lecanorine apothecia with plane brown to black discs, a thin thalline margin that is often excluded with age, *Mischoblastia*-type ascospores with persistently angular lumina and smooth walls, and showing a well-developed torus only when mature.

The other species of *Rinodina* that contain atranorin and have *Mischoblastia*-type ascospores are included in the *Rinodina oxydata*-group (Matzer & Mayrhofer 1996). However, unlike those taxa, *R. oxydatella* lacks the typical N+ red or reddish purple, aeruginose pigment in the proper exciple (*cinereorufa*-green or *Bagliettoana*-green pigment).

SPECIMENS EXAMINED

References

Figure 1. *Rinodina fijiensis* (holotype in CANB).

Figure 2. *Rinodina oxydatella* (holotype in CANB).
New records and new combinations of buelliolid lichens (Physciaceae, Ascomycota) from New Zealand

John A. Elix
Research School of Chemistry, Building 137, Australian National University, Canberra, A.C.T. 2601, Australia
email: John.Elix@anu.edu.au

William M. Malcolm
Micro-optics Ltd, PO Box 320, Nelson 7040, New Zealand
e-mail: nancym@clear.net.nz

Allison Knight
Department of Botany, University of Otago
PO Box 56, Dunedin 9054, New Zealand
e-mail: alli_knight@hotmail.com

New records for New Zealand

This species was previously known from Europe, Iceland, North America (Scheidegger 2009), Antarctica and subantarctic islands (Övstedal & Lewis Smith 2001), Tasmania (Elix & Kantvilas 2013a) and Norfolk Island (Elix 2015). It is characterized by the pale grey-brown to brown areolate to bullate or sublobate thallus, the broadly adnate to sessile apothecia up to 1 mm wide with epruinose discs, Physciathecium Buellia-type ascospores 13–18 × 7–10 µm which become constricted at the septum, filiform conidia 15–30 × 0.8–1.0 µm and by the absence of lichen substances. The species occurs on coastal rocks, and a detailed description is given in Scheidegger (2009) and Elix (2011).

SPECIMEN EXAMINED

This species was known previously from Australia, East Africa, Reunion, Central and South America (Elix 2015, Marbach 2000). It is characterized by the grey to yellow-green, smooth to weakly verruculose, crustose thallus containing norstictic and connorctic acids (K+ red), epruinose or rarely pruinose apothecia, an olive-green to greenish black ephymenium (containing microcnema-green pigment), a non-inspersed hymenium, Buellia-type ascospores, 12–18 × 6–9 µm, lacking wall-thickenings but with an ornamented outer spore wall, and bacilliform conidia 7–9 × 1–1.2 µm. A detailed description is given in Marbach (2000).

SPECIMENS EXAMINED
New Zealand. • North Island, South Auckland, Wahi-Whangamata road, on bark in gully with remnant rainforest, J. Johnston 2467, 2468, 20.iii.1985 (CANB); • South Island, Nelson, Hira Forest, Central Road, firebreak past Doubles Lookout, NZMS 260 O27:409920, 400 m alt., on bark, W. Malcolm 2080, 24.v.1994 (CANB); • South Island, Nelson, Sharland Creek, ridge above west junction of Fern Road 22, NZMS 260 O27:383955, 300 m alt., on bark, W. Malcolm 2130, 20.xi.1994 (CANB).

Previously this species was only known from Australia with collections from the Australian Capital Territory and Tasmania (Elix & Kantvilas 2013b). It is characterized by the saxicolous habit, the presence of soredia and the lack of lichen substances. The crustose, areolate, pale tan to dirty yellow-brown or olive-brown thallus can be quite variable, ranging from scabrid and sparingly sorediate along the margins of some areoles to granular and eroded with the soredia spreading over the upper surface. The lecideine, broadly adnate to sessile apothecia have black, epruinose discs and 1-septate, Buellia-type ascospores, 10–14 × 5–8 µm with a smooth outer spore wall and bacilliform conidia, 3–4 × 0.7–1 µm. A detailed description is given in Elix & Kantvilas (2013b).

SPECIMENS EXAMINED

This species was previously known only from the type collection from Kosciuszko National Park in New South Wales, Australia (Elix & Kantvilas 2013b). It is characterized by the saxicolous habit, the smooth, crustose white thallus, immersed apothecia, the red-brown, N- ephymenium, the dark red-brown hymenium and the presence of atranorin and norstictic acid. Although the widespread and variable species B. aethalea (Ach.) Th.Fr., is somewhat similar, it differs in having a conspicuous, black prothallus surrounding the thallus as well as in lacking atranorin, and in having a very pale brown to colourless hymenium and an ephymenium containing aeruginose and N- reddish pigments. Buellia austroalpina has scattered, cryptolecanorine or lecideine, persistently immersed apothecia with brown-black to black, epruinose discs and 1-septate, Buellia-type ascospores, 14–20 × 6–8 µm, with a finely ornamented outer spore wall and bacilliform conidia, 4.5–5.5 × 1 µm. A detailed description is given in Elix & Kantvilas (2013b).
SPECIMENS EXAMINED
New Zealand: • South Island, Nelson, Sharland Creek, Hira Forest, NZMS 260 O27:389945, 150 m alt., on rock, W. Malcolm 0826, 14.x.1993 (CANB).

This is one of the most common saxicolous species of Buellia in mainland Australia and Tasmania, but is also known from Lord Howe Island and Norfolk Island (McCarthy 2015). Buellia homophylia is characterized by the whitish to grey-white or grey, crustose thallus, with or without a prominent black prothallus, a non-amyloid medulla, the immersed then broadly adnate and commonly crowded, angular apothecia, a partly aeruginose, N+ red-violet to red-brown epithymenium, Buellia-type ascosporae, 10–25 × 6–10 µm, which become constricted at the septum, bacilliform conidia 4–6 × 1 µm and the presence of atranorin and norstictic acid. A detailed description is given in Elix (2011).

SPECIMENS EXAMINED
New Zealand: • North Island, South Auckland, near Oiholi, Taupo-Waiotapu road, 38°19′5, 176°31′E, on rock outcrop, J. Johnston 2454, 20.iii.1985 (CANB); • South Island, Nelson, Wells Hill ridge, NZMS 260 O27:381949, on rock, W. Malcolm 0912, 14.x.1993 (CANB).

This species is known from Europe, North America, Macaronesia, Asia and Africa (Coppen et al. 2009) and in-southeastern Australia (McCarthy 2015). It is characterized by an areolate to subsquamulose, yellowish to grey thallus where the areoles are typically aggregated into small patches 1–2 cm wide, the presence of arthrothelin (C+ orange), immersed apothecia occurring singly in each areole, an aeruginose, N+ red-violet ephymenium, Buellia-type ascosporae, 12–22 × 6.5–12.0 µm and bacilliform conidia, 4.6–0.8–1.0 µm. It occurs on rock at high elevations. A detailed description is given in Coppens et al. (2009).

SPECIMENS EXAMINED
New Zealand: • South Island, Canterbury, Banks Peninsula, Mt. Herbert track, 43°04′12″S, 172°46′18″E, on rock, J. Johnston 2454, 26.xii.1993 (CANB).

This taxon is very common on rocks in mainland Australia, and is also known from Lord Howe Island and Norfolk Island (Elix 2014, 2015). It is characterized by the whitish to grey-white or grey, crustose thallus, usually with a prominent black prothallus, an aleurod medulla, the immersed then broadly adnate to sessile, rounded apothecia, a partly aeruginose, N+ red-violet to red-brown ephymenium, Buellia-type ascosporae, 9–16 × 4.5–7.5 µm, which rarely become constricted at the septum, bacilliform conidia 4.6–1.5 µm and the presence of atranorin and norstictic acid. It is distinguished from the superficially similar B. homophylia by the amyloid medulla and smaller spores and from Buellia spuria (Schaer.) Anzi var. spuria by containing norstictic acid rather than stictic acid as the major secondary metabolite. A detailed description is given in Elix (2011).

SPECIMENS EXAMINED

Previously this species was known from Australia (Queensland, Tasmania) and Central America (Elix 2009). It is characterized by the white, grey-white, grey or pale yellow-grey thallus, usually 8-spored asci, a hymenium densely inspersed with oil droplets, moderately large ascosporae, 26–32 × 9–12 µm, with weak septal and subapical wall thickenings and a moderately ornamented outer surface, by the presence of norstictic acid and bacilliform conidia, 5.7–1.0 µm. A detailed description is given in Elix (2009).

SPECIMENS EXAMINED
New Zealand: • South Island, Canterbury, Banks Peninsula, 1 km SW of Boss Hill, 43°51′5, 172°53′E, 640 m alt., on dead wood in remnant podocarpus forest, J.A. Elix 18987 & J. Johnston, 3.iii.1985 (CANB).

This species was previously known from Europe, North America and Asia (Coppen et al. 2009). It is distinguished by its terrocolous habit where it often grows over other lichens, decaying bryophytes and plant detritus. The New Zealand endemic T. confusus Nordin grows in analogous habitats, but differs in having larger, sessile apothecia (0.5–2.5 mm wide), smaller ascosporae [4–21(–25) × 5–7.5 µm] and in containing atranorin. Tetramelas insignis is characterized by the white to creamish white or grey-white, warty-papillate thallus, the broadly adnate, lecideine apothecia, a proper margin which is often excluded in older, strongly convex apothecia, black, epruinose discs, the brown, 1-septate ascosporae, 23–32 × 8–13 µm and the presence of 6-O-methylarthonethel. Descriptions and comparisons are given in Nordin (2004) and Coppen et al. (2009).

SPECIMENS EXAMINED
New Zealand: • South Island, Otago, Rock and Pillar Range, above Leaning Lodge Hut, 42°25′04″S, 170°05′08″E, 1240 m alt., on stones in bank of old river terrace, A. Knight, 6.xii.2014 (CANB, OTA).

The new combinations
Amandinea fuscoatratula (Zahlbr.) Elix comb. nov.
Type: New Zealand: Otago, Goat Island near Dunedin, on coastal rocks, J.S. Thomson T 1044 (holotype: V; isotypes CHR!, OTA).

This species is characterized by a dark grey to olive-brown, mosaic-forming, rimose-areolate thallus delimited by a marginal, black prothallus, scattered, immersed to broadly adnate apothecia up to 0.8 mm wide, a non-inspersed hymenium, 8-spored asci, brown, 1-septate, Buellia-type ascosporae, 11–16 × 6–8 µm, where the immature spores briefly exhibit weak medial wall thickenings and by the absence of lichen substances. The curved, filiform conidia, 18–25 × 0.8–1.0 µm, confirm that this species should be accommodated in Amandinea.
Amandinea nitrophila (Zahlbr.) Elix comb. nov.

MB 812402

Type: New Zealand: Otago, Black Head, Dunedin, on coastal rocks, J.S. Thomsen T394 (AS!) (holotype: W; isotype CHR!)

This species was previously placed in synonymy with *Amandinea otagensis* (Zahlbr.) Blaha & H.Mayrhofer (Blaha 2002, Galloway 2007), but should not have been. Although both species have immersed apothecia and similar, curved, filiform conidia, *A. otagensis* has *Physconia* -type spores with strong medial wall-thickenings, whereas *A. nitrophila* has *Buellia* -type spores which exhibit only weak medial wall-thickenings briefly during early ascospore ontogeny. *Amandinea nitrophila* is characterized by a brown to grey-brown, rimose-areolate thallus that usually lacks a prothallus, scattered, immersed to broadly adnate apothecia up to 0.5 mm wide, a non-inspersed hymenium, 8-spored asci, brown, 1-septate, *Buellia*-type, ascospores, 6–16 × 6.5–9 µm, and the absence of lichen substances. The rounded lumina of the immature, *Buellia*-type spores exhibit no interconnecting canal. This species exhibits weakly curved, filiform conidia, 12–22 × 0.7 µm, confirming that it should be accommodated in *Amandinea*.

Amandinea porulosa (Müll.Arg.) Elix comb. nov.

MB 812403

Type: New Zealand: Sine loco, W. Colenso [lectotype: G fide D.J. Galloway, fide Flora of New Zealand Lichens: 51, 1985 (not seen)].

This species is characterized by the lignonicolous or more rarely corticolous habit, a whitish to pale grey thallus, no obvious prothallus, scattered, broadly adnate to sessile apothecia up to 0.3 mm wide, a non-inspersed hymenium, 8-spored ascii, brown, 1-septate, *Pachysporaria*-then *Buellia*-type ascospores, 10–17 × 6–8.5 µm and by the absence of lichen substances. The rounded lumina of the immature, *Pachysporaria*-type spores exhibit no interconnecting canal. This species exhibits weakly curved, filiform conidia, 12–22 × 0.7 µm, confirming that it should be accommodated in *Amandinea*.

SPECIMENS EXAMINED

New Zealand:
- **South Island, Otago, Kew, Dunedin, 45°54’04”S, 170°28’24”E, 70 m alt., on horizontal surface of wooden rail in garden, A. Knight, 10.x.2014 (CANB, OTA);**
- **South Island, Otago, Tunnel Beach, Dunedin, 45°55’09”S, 170°27’09”E, 80 m alt., on wooden railing in pasture beside track, A. Knight, 12.iii.2014 (CANB, OTA);**
- **South Island, Otago, Tavora Reserve, near Goodwood, 45°31’32”S, 170°45’16”E, 3 m alt., on twigs of *Plagianthus divaricatus* at edge of salt marsh, A. Knight, 7.vi.2014 (CANB, OTA).**

References

New species of Buellia sens. lat. (Physciaceae, Ascomycota) from tropical Australia

John A. Elix
Research School of Chemistry, Building 137, Australian National University, Canberra, A.C.T. 2601, Australia
email: John.Elix@anu.edu.au

Abstract

Buellia bohlensis Elix, B. dimbulahensis Elix, B. herveyensis Elix, B. hyporoea Elix, B. kapoorae Elix and B. rhizocarpa Elix from tropical Australia are reported as new to science.

This paper continues investigations into Buellia-like lichens in Australia, following on from the first accounts of Buellia and related genera (Elix 2009, 2011; Elix and Kantvilas 2013b, 2014a, 2015) and revisions to Amandinea (Elix and Kantvilas 2013a), Bacilifera (Elix and Kantvilas 2014b), Cratiria (Elix 2014), Monorolicina (Elix 2015) and other crustose Physciaceae (Elix and Kantvilas 2015). In this paper, I deal with six new saxicolous species of Buellia in the broad sense from tropical Australia.

The new species

1. Buellia bohlensis Elix, sp. nov. Fig. 1

MB 812749

Similar to Buellia dispersa A.Massal. but differs in having a lobulate thallus, a dark olive-brown upper surface, a medulla that lacks calcium oxalate, shorter ascospores, and in containing confluentic acid.

Type: Australia, Queensland, Kennedy North district, Mt. Bohe, 34 km SW of Charters Towers, 20°17’S, 146°01’E, 400 m alt., on sandstone rocks in Eucalyptus-Xanthorrhoea-dominated woodland, J.A. Elix 20634 & H. Streimann, 22.vi.1986 (holotype – CANB).

Thallus squamulose to lobulate, dark brown to brown olive-brown, continuous, to 40 mm wide and up to 1 mm thick; lobules and squamules 0.1–0.4 mm wide and 0.3–0.6 mm long, rounded or becoming elongate at the margins, densely imbricate with age, esorediate; upper surface smooth to weakly verruculose, matt; prothallus not apparent; upper cortex c. 10 µm thick; medulla white, H2SO4–, I–; lower surface corticate in part; photobiont cells 8–18 µm diam. Apothecia 0.3–0.8 mm wide, lecideine, broadly adnate to sessile; disc black, epruinose, weakly concave then plane to eventually undulate; proper margin distinct, raised above but concolorous with the disc, persistent, in section 30–50 µm thick, outer zone brown to dark brown, not carbonized, K–, sub-N–, inner paler brown. Epiphyllumenium 35–50 µm thick, brown to olive-brown, K–, N–. Hypotheicum 50–65 µm thick, colourless, not inspersed; paraphyses 1.5–2 µm wide, simple to sparsely branched, capitate, with apices 3.5–6 µm wide and brown caps; asci of the Bacidi-type, 8 or fewer spores per ascus. Ascospores Physciosa-then Buellia-type, 1-septate, brown to dark brown, ellipsoid, 10–15 × 5–8 µm, usually not constricted at the septum; outer spore wall smooth. Pycnidia immersed, brown, c. 0.1 mm wide; conidia bacilliform, 4–7 × 1–1.5 µm.

Chemistry: Thallus K–, P–, C–, UV– containing confluentic acid.

Etymology: The epithet is derived from the type locality.

Remarks

In many respects B. bohlensis resembles B. dispersa A.Massal. in that both can have areolate to squamulose thalli and similar apothecial anatomy. However, B. dispersa is characterized by a thick, bulate-areolate to subsquamulose or squamulose thallus with angular, concave squamules with a pruinose upper surface and an ecorcite lower surface. The darker coloured B. bohlensis typically has rounded, convex lobules that become imbricate, and have an epruinose upper surface and a corticate lower surface. In addition the medulla of B. dispersa contains calcium oxalate, whereas that of B. bohlensis does not, and the two species differ chemically. Buellia dispersa invariably contains 2-O-methylperlatolic acid and atranorin together with accessory confluentic acid, whereas B. bohlensis contains only confluentic acid. Further, the ascospores of B. dispersa are somewhat longer (10–19 µm).

SPECIMENS EXAMINED

Queensland: • Type locality, on shaded sandstone in Eucalyptus-Xanthorrhoea-dominated woodland, H. Streimann 37235, 22.vi.1986 (CANB); • Burke district, c. 25 km E of Croydon, 18°14’S, 142°26’E, 110 m alt., on sandstone in open Eucalyptus woodland and grasses, H.T.Lambch 111202, 20.vii.1996 (CANB).

2. Buellia dimbulahensis Elix, sp. nov. MB 812750

Similar to Buellia halonia (Ach.) Tuck., but differs in having smaller ascospores, shorter conidia, and a non-aeruginose epihymenium, and in containing 4,5-dichloroliche-xanthone.

Type: Australia, Queensland, Petford-Irvinebank road, 29 km S of Dimbulah, 17°25’S, 145°07’E, 620 m alt., on semi-shaded quartz boulder on creek bank in Eucalyptus woodland on creek flats, H. Streimann 46519, 14.xii.1990 (holotype – CANB; isotype – ESS).

Thallus crustose, rimose-cracked, ± areolate, continuous, matt, smooth, esorediate, yellow, pale yellow to whitish yellow, epruinose, up to 70 mm wide and 0.1 mm thick; individual areoles 0.1–0.4 mm wide, irregular, ±plane; prothallus not apparent; photobiont cells 8–13 µm wide; medulla white, lacking calcium oxalate (H2SO4–, I–; Apothecia 0.2–0.8 mm wide, scattered, lecideine, roundish, immersed at first then broadly adnate or becoming sessile; disc black, epruinose, plane but becoming convex with age; proper excipulum persistent, excluded in convex apothecia, black, in section 35–50 µm thick, with outer part dark brown to brown-black, K–, N+ orange-brown, inner part reddish brown. Epiphyllumenium 8–10 µm thick, brown to dark olive-brown, K–, N+. Hypotheicum 50–60 µm thick, red-brown to dark red-brown, K+ dark, chocolate brown. Hymenium 60–75 µm thick, colourless, not inspersed; paraphyses 1.5–2.0 µm wide, simple to moderately branched, capitate, with apices 4–5.5 µm wide and dark brown caps. Ascii of the Bacidi-type, 8 or fewer spores per ascus. Ascospores Physciosa- then Buellia-type, becoming centrally constricted, 1-septate, olive-grey to brown, broadly ellipsoid, 15–23 × 7–12 µm; outer spore wall strongly ornamented. Pycnidia immersed; conidia elongate-bacilliform, straight, 9–12.5 × 0.7–1 µm.

Chemistry: Medulla K–, P–, PD–, UV+ orange; containing 4,5-dichloroliche-xanthone.

Etymology: The specific epithet is derived from the type locality.

Remarks

Morphologically the new species resembles B. halonia, in that both species have initially immersed apothecia and relatively large ascospores. However, B. halonia has an aeruginose pigment in the excipulum and epihymenium (reacting N+ red-violet),
a pigment absent in *B. dimulahensis*, smaller Physconia-then Buellia-type ascospores (11–19 × 6–9 µm) with a finely ornamented outer wall, and shorter conidia (5–7 × 1–1.5 µm). The two species can also be readily distinguished chemically, because *B. halonia* contains either arthothelin or isothothelin as a major metabolite together with atranorin (minor).

SPECIMENS EXAMINED

Northern Territory: • Mt Bundle, Arnhem Highway, 93 km SE of Darwin, 12°53’S, 131°36’E, 40 m alt., on shaded and semi-exposed boulders in Eucalyptus woodland with *Celtis, Strýchnos* and *Pouteria* with large granite outcrops, H. Streimann 48645, 22.vi.1991 (B, CANB, ESS); H. Streimann 48650, 22.vi.1991 (R, CANB).

Queensland: • Chillagoe-Dimbulah road, 14 km SE of Chillagoe, 17°16’S, 144°34’E, 0.5 mm alt., on boulder in *Lysiphyllum, Gyracrus*, *Brachychnor* and *Erithrina*-dominated limestone outcrop with easterly aspect, H. Streimann 46496, 13.xii.1990 (CANB, ESS).

3. *Buellia herveyensis* Elix, sp. nov.

Similar to *Buellia leptocline* (Flot.) A.Massal., but differs in having a non-amyloid medulla, a K– excipulum, and longer ascospores and conidia.

Type: Australia, Queensland, Tabletop, Hervey Range, 39 km SW of Townsville, 19°22’S, 146°28’E, 350 m alt., on boulder in dry sclerophyll forest with *Pandorea austrosorediosa* and *Lantana*, H. Streimann 37194, 20.vi.1986 (holotype – CANB).

Thallus K–, P–, C+ orange, UV+ yellow or orange; containing thiophanic acid (major), ±3-O-methylthiophanic acid (major), isoaromatolin (minor).

Etymology: The epithet refers to the colour of the solution produced by treating the excipulum, hypothecium and substipitatum with K.

Remarks

The new species is characterized by the crustose, rimose, chalky, reddish brown to dirty white thallus, the relatively large, *Buellia*-type ascospores with a strongly ornamented outer wall, elongate bacilliform conidia, and the presence of atranorin. *Buellia leptocline*, a widespread ariet in the Northern Hemisphere, also contains medullary atranorin (Coppins et al. 2007). However, *B. leptocline* differs in having a thin, grey thallus, an I+ blue medulla, shorter, *Physconia*-type ascospores [12–16–(18) µm long] with a finely ornamented outer wall, and an excipulum that effuses an orange solution in K. *Buellia cinnaabrina* U.Gruge is also chemically identical, but has a medulla containing ochraceous calcium oxalate (H2SO4–), smaller ascospores 13–19 × 6–8 µm, and a bright red subhypothecium that extends into the excipulum and effuses a yellow solution in K. At present *B. herveyensis* is known from only the type collection. Associated species include *Canoparmelia herveyensis* Elix, *C. owariensis* (Asahina) Elix, *Crattaria xanthantha* (Elix) Kalb & Elix, *Drimaria applanata* (Fée) D.D.Awasthi, *D. flavus* (Müll.Arg.) C.W.Dodge, *Parmentiera reticulata* (Taylor) M.Choisy, several *Pertusaria* species, *Porina chlorotica* P.M.McCarthy, *Pynxix elexi* Kalb and *Xanthoparmelia australisica* D.J.Galloway.

4. *Buellia hyporosea* Elix, sp. nov. (Fig. 4)

MB 812752

Similar to *B. polyxanthonica* Elix var. *polyxanthonica*, but differs in having an excipulum, hypothecium and subhypothecium that effuse an intense red solution in K, and an N+ violet echymenium.

Type: Australia, Queensland, Hugh Nelson Range, along Plath Road, 15 km S of Atherton, 17°25’S, 143°26’E, 1080 m alt., on granite rocks in Eucalyptus grandis woodland, J.A. Elix 16425 & H. Streimann, 25.vi.1984 (holotype – CANB; isotype – BRI).

Thallus crustose and areolate to subquamulosely, discontinuous, to 45 mm wide, up to 0.35 mm thick; upper surface smooth, matt, off-white to pale whitish grey or whitish yellow, individual areoles (subquamules) rounded, 0.05–0.5 mm wide; prothallus marginal and between adjacent areoles, thick, black, prominent and persistent; cortex 10–15 µm thick; medulla white or red-brown pigmented in the lower part, lacking calcium oxalate (H2SO4–); Apothecial cells 8–13 µm diam. Apothecial r.-type, 1-septate, brown, photobiont cells 0.3–0.7 mm wide, lecideine, broadly adnate to sessile and constricted at base; disc brown-black to black, epruinose, weakly concave then ±plane or eventually convex; proper excipulum thick, scattered to crowded, broadned, broadly adnate but soon becoming sessile; disc black, epruinose, weakly concave then plane or eventually convex; proper excipulum thick and prominent at first, excluded in older, convex apothecia, in section 35–45 µm thick, outer part dark olive-green, K–, N+ violet, inner part dark red-brown, K+ red, N+ orange-brown. *Hymenium* 12–20 µm thick, olive-green to olive-brown, K–, N+ violet. *Hypothecium* 40–60 µm thick, brown to reddish-brown, K+ red solution but not forming red crystals; subhypothecium intense red-brown to olive-rust, 75–90 µm thick, K+ intense red solution. *Hymenium* 45–55 µm thick, colourless, not inspersed with oil droplets; paraphyses 1.0–2.0 µm wide, simple to branched, capitate, with apices 3–4 × 0.3 mm wide and olive-brown caps; asci of the *Bacidia*-type, 3–8-spored. *Ascosporae* of the *Buellia*-type, 1-septate, grey-green to brown, ellipsoid, 12–17(–20) × 6–10 µm, not constricted at the septum, spore wall of uniform thickness; outer spore wall smooth to finely ornamented. *Pycnidia* not seen.

Chemistry: Thallus K–, P+ or yellow, C–, UV–; containing atranorin.

Etymology: The epithet refers to the colour of the solution produced by treating the excipulum, hypothecium and subhypothecium with K.

Remarks

Buellia hyporosea is characterized by the smooth, dull, areolate to subquamulosely, off-white to pale whitish grey or whitish yellow thallus, sessile apothecia, an excipulum, hypothecium and subhypothecium that give an intense red solution in K, and an N+ violet echymenium.
theium and an olive-brown N– epihymenium.

At present the new species is known from only far-north Queensland and the Northern Territory, where it occurs on siliceous rocks. Associated species include Buellia millanilla (Tuck.) W.A.Weber, Parmotrema reticulatum (Taylor) M.Choisy, Pertusaria xanthophleba Müll.Arg. and Pycnia coccine (Sw.) Nyl.

SPECIMENS EXAMINED
Northern Territory: • Baroalba Creek, 16 km SSE of Jabiru airfield, 12°49’S, 135°55’E, 200 m alt., on tiny rounded boulder amongst shrubs, ferns and large boulders with easterly aspect, H. Streimann 42341 pr.p., 21.iv.1989 (B, CANB).
Queensland: • Mt Finnigan, Mt Finnigan Range, Cedar Bay National Park, 39 km S of Cooktown, 15°49’S, 145°16’E, 1090 m alt., on exposed boulder in exposed heathy-grassy area with large rock outcrops, H. Streimann 57204, 20.x.1995 (B, CANB).

5. Buellia kaproorea Elix, sp. nov. Fig. 5

MB 812753

Distinguished by the minute, yellow to yellow-green squamules or areoles, the 3-septate ascospores, 12–18 × 5–7.5 µm, and the presence of arthothelin.

Type: Australia, Queensland, Razorback Range, 3 km NW of Mount Morgan, 23°28’S, 150°22’E, 310 m alt., on semi-exposed boulder in heathy, dry sclerophyll forest, H. Streimann 52393 pr.p., 26.viii.1993 (holotype – CANB).

Thallus crustose to squamulose, discontinuous, to 30 mm wide, consisting of minute squamules or areoles, the areoles contiguous or separate, 0.5–1.5 mm wide, sublobate at the margins, sublobes 0.05–0.1 mm wide. Upper surface yellow to pale yellow-brown, occasionally becoming markedly convex and bullate. Prothallus black, marginal and between adjacent areoles; cortex c. 10 µm thick; medulla white, lacking calcium oxideolate (H2SO4–), I–; photobiont cells 8–13 µm diam. Apothecia 0.1–0.5 mm wide, lecideine, broadly adnate to sessile; disc black, epruinose, plane then becoming markedly convex; proper excipulum distinct, persistent, in section 30–50 µm thick, outer zone dark brown, K–, inner zone yellow. Hymenium 12–15 µm thick, dark brown, K–, N–. Hypotheicum 25–30 µm thick, colourless to pale yellow-brown, K–, Hymenium 45–55 µm thick, colourless, not inspersed; paraphyses 1.5–1.7 µm wide, simple to sparingly branched, with apices 5–6 × 0.7 µm wide and dark brown caps; ascii of the Bacidia-type, 8–15 × 0.8–1.2 µm wide, not inspersed in patches to 30 mm wide, sorediate in part; soralia crateriform, shallow, often constricted at the septum; outer spore wall smooth. Pycnidia not seen. Chemistry: Thallus K–, C–, C+ orange, P–, UV+ dull orange; containing arthothelin.

Etymology: The epithet refers to the type locality — from the Greek kapros (wild boar) and öros (mountain range).

Remarks

Buellia kaproorea is a very distinctive species, readily recognised by the small, scattered, yellow to yellow-green squamules or areoles, the 3-septate ascospores, and the presence of arthothelin. Some morphotypes of Buellia ocellata (Flot.) Körb. also comprise discontinuous, minute squamules or areoles on a black hypothallus, and contain arthothelin, but the ascospores of that species are always 1-septate and are somewhat larger, 11–22 × 5–6.5 µm. The only other known arthothelin-containing species with multisepate ascospores is the Antarctic B. anisomerum Vain., but it lacks a prothallus, has larger, 1–2-septate ascospores, 20–22 × 6–7 µm and an I+ blue medulla (Nordin 2000).

At present the new species is known only from the type locality. Associated species include Acarospora citrina (Taylor) Zahlbr., ex Reh., Australasianae streimannii Matzer, H.Mayrhofer & Elix, Callophysora leptocarpa (Nyl.) Zahlbr., Dimelaena elevata Elix, Kalb & Wippel, Diplolichistes actinostomomas (Pers.) Zahlbr., Lecanora galactiniza Nyl., L. pseudistera Nyl., Paraporpidia leptocarpa (C.Bab. & Mitt.) Rambold & Hertel, Parmotrema prae- sorediosum (Nyl.) Haele, Peltula euclea (Ach.) Poelt ex Ozenda & Clauzade and Pertusaria remotula A.W.Archer.

6. Buellia rhizocarpella Elix, sp. nov. Fig. 6

MB 8127544

Similar to Buellia amandineaeformis Elix & Kantvilas, but differs in having delimited crateriform soralia with intense yellow soredia, and in containing rhizocarpic acid.

Thallus crustose, areolate, pale yellow-brown to dark yellow-green, continuous to dispersed in patches to 30 mm wide, sorediate in part; soralia crateriform, shallow, c. 0.1 mm diam., rarely coalescing and spreading over the surface, soredia intense yellow, finely granular; individual areoles coalescing or dispersed, 0.1–0.3 mm wide and to 0.15 mm thick, with smooth, sblackened margins, appearing micro-lobate; prothallus not apparent; medulla intense yellow, I–; photobiont cells 8–13 µm diam. Apothecia 0.05–0.3 mm wide, scattered, lecideine, broadly adnate to sessile; disc black, epruinose, plane to weakly convex; proper excipulum distinct, persistent, in section 30–50 µm thick, outer zone dark brown, K–, inner zone yellow. Hymenium 12–15 µm thick, dark brown, K–, N–. Hypotheicum 25–30 µm thick, colourless to pale yellow-brown, K–, Hymenium 45–55 µm thick, colourless, not inspersed; paraphyses 1.5–1.7 µm wide, simple to sparingly branched, with apices 5–6 × 0.5 µm wide and dark brown caps; ascii of the Bacidia-type, 8–sorediate. Ascosporas at first of the Physconia-type, then of the Buellia-type, 1-septate, olivaceous-green to brown, ellipsoid, 11–15 × 5–8 µm, usually not constricted at the septum; outer spore wall smooth. Pycnidia not seen. Chemistry: Thallus K–, C–, P–, C+ UV+ orange; containing rhizocarpic acid.

Etymology: The epithet refers to the chemistry of the species.

Remarks

Buellia rhizocarpella is a distinctive species, readily recognized by the presence of soredia and rhizocarpic acid. Superficially, it resembles Buellia amandineaeformis, another sorediate species with a yellowish brown upper surface. However, the two species differ chemically and in the development of the soredia. Whereas B. amandineaeformis is sparingly sorediate along the margins of some areoles, and becomes granular and eroded with the soredia spreading over the upper surface, the soralia of B. rhizocarpella are typically delimited and crateriform. Buellia amandineaeformis lacks lichen substances. At present rhizocarpic acid in known from only two other Buellia sens. lat. species, the corticolous B. rhizocarpa Etayo, Giralt & Elix and the saxicolous B. centralis H.Magn. Neither of those species is sorediate, and both differ chemically from B. rhizocarpella, the former containing atranorin, glyrophoric, and alectoriaic acids in addition to rhizocarpic acid, and the latter additional hypoprotocetraric and normotatic acids (Etayo et al. 2010; Obermayer et al. 2004). Buellia rhizocarpa also differs in having a dark, olivaceous-brown epihymenium containing micromera-green and smaller ascospores, while B. centralis differs in having a white medulla and a thallus with marginally radiating lobes.

At present the new species is known from only one locality. Associated species include Acarospora citrina (Taylor) Zahlbr., ex Reh., Australasianae streimannii Matzer, H.Mayrhofer & Elix, Callophysora leptocarpa (Nyl.) Zahlbr., Dimelaena elevata Elix, Kalb & Wippel, Diplolichistes actinostomomas (Pers.) Zahlbr., Lecanora galactiniza Nyl., L. pseudistera Nyl., Paraporpidia leptocarpa (C.Bab. & Mitt.) Rambold & Hertel, Parmotrema prae- sorediosum (Nyl.) Haele, Peltula euclea (Ach.) Poelt ex Ozenda & Clauzade and Pertusaria remotula A.W.Archer.

SPECIMEN EXAMINED

Northern Territory: Sturt Highway, 11 km NW of Pine Creek, 13°46’S, 131°45’E, 240 m alt., on shaded rock face in Eucalyptus-dominated savannah below escarpment, H. Strei- mann 42108 & J.A. Curnow, 15.iv.1989 (CANB).

Acknowledgment

I would like to thank Dr Alan Archer (Sydney) for the photograph of B. rhizocarpella.

References

Coppins, BJ; Scheidegger, C; Aptroot, A (2009): Buellia de Not. (1846) in Smith, CW; Aptroot, A; Coppins, BJ; Fletcher, A; Gilbert, OL; James, PW; Wolseley, PA (eds), The Lichen Flora of Great Britain and Ireland, 2nd edn, pp. 339–341. The British Lichen Society, London.

Etayo, J; Giralt, M; Elix, JA (2010): Buellia rhizocarpica, a new corticolous species from Mexico. Lichenologist 42, 723–726.

Er, OAH; Reynolds, CL; Blanchon, DJH (2025): Additional lichen records from New Zealand. Australasian Lichenology 77, 11–17.

Kraichak, D; Parmen, S; Lücking, R; Lumbsch, HT (2013): Gintonaria and Xalocoa, two new genera to accommodate temperate to subtropical species in the predominantly tropical Graphidiaceae (Ostropales, Ascomycota). Australian Systematic Botany 26, 466–474.

Nelsen, MP; Lücking, R; Andrew, CJ; Apte, PM; Mercado-Díaz, JA; Rivas-Palacios, E; Lumbsch, HT (2014): Molecular phylogeny reveals the true colours of Mycolelaides (Ascomycota: Ostropales). Australian Systematic Botany 27, 38–47.

Vale David Galloway (1942–2014)

A summary of his lichenological achievements and some personal recollections

David was born on 7 May, 1942, in Invercargill, New Zealand. His education and introduction to lichens and lichenology through his mentor Peter James have been well documented elsewhere (Galloway 2014a, b; Kärnefelt et al. 2015), and are not repeated here. He made enormous contributions to Southern Hemisphere lichenology – particularly in the taxonomic treatments of Placopsis, Pseudocyphellaria and Sticta, in his contributions to lichen biogeography, and to lichenological history. His lichen contributions were not limited to New Zealand, but also centred on mainland Australia and Tasmania, Chile and Antarctica. Some measure of his many contributions can be gleaned from Volume 95 of Bibliotheca Lichenographica, published on the occasion of his 65th birthday in 2007, where an impressive list of 319 publications in the Flora of New Zealand (1985) was of the Flora of New Zealand Lichens, Checklist, Key and Glossary (1991, symposium volume), New Zealand Lichens, Checklist, Key and Glossary (1997, with W.M. Malcolm) and several Pseudocyphellaria monographs. His revised second edition of the Flora of New Zealand Lichens, Lichen-forming and Lichenicolous Fungi (2007) was and is truly monumental, comprising 2 volumes, 2261 pages treating 1707 taxa in 354 genera.

David was awarded an Acharius Medal by the IAL for his many contributions to lichenology in 2009, followed by a Hutton Medal by the Royal Society of New Zealand for excellence in plant sciences in 2010. There is no doubt that as far as New Zealand lichens are concerned, his will be a hard act to follow! David was an excellent convener and organizer, as he demonstrated during his tenure as President of the IAL (International Association for Lichenology) over the period 1987–1992. Particularly memorable were the mycological meeting in Regensburg in 1989 and the London meeting on Tropical Lichens in 1990.

At the personal level I found David an enigmatic character. Although we had corresponded regularly, we first met when I spent 6 months working with him at DSIR Botany Division in Lincoln (New Zealand) in 1980. Although he was preoccupied in working on his first edition of the Flora, we spent several very memorable weeks in the field, in particular at the Denniston Plateau and the Nelson Lakes district of the South Island. Being exposed to so many wonderful austral lichens (with names) was a real eye-opener for me. I remember one particular incident as we ascended the steep, winding dirt road from Westport to Denniston. “Stop the car now - please” David called! I thought that he might be feeling car-sick, but no, he had spotted an interesting Pseudocyphellaria on the overhanging branch of a roadside tree. With his hand lens in the back seat of the car he was convinced that it was a new species – which he subsequently described as Pseudocyphellaria margaretae D.J.Galloway in honour of our driver and botanist colleague Margaret Bullin. It turned out to be a good day, as we also collected Aesteveps glutinosus (‘Pteris’).David was around – an extremely accomplished raconteur especially when fuelled by a wee dram of scotch and by companions like the late George Scott. He was also very adept at passing the buck to the naïve and unsuspecting – I recall having to host a true eye-opener for me. I remember one particular incident as we ascended the steep, winding dirt road from Westport to Denniston. “Stop the car now - please” David called! I thought that he might be feeling car-sick, but no, he had spotted an interesting Pseudocyphellaria on the overhanging branch of a roadside tree. With his hand lens in the back seat of the car he was convinced that it was a new species – which he subsequently described as Pseudocyphellaria margaretae D.J.Galloway in honour of our driver and botanist colleague Margaret Bullin. It turned out to be a good day, as we also collected Aesteveps glutinosus (‘Pteris’).
about it that evening, but I never did see the televised documentary, damn it. On the day following a particularly hard night, we visited a location called “Silent Grove” – it seemed appropriate for such a location and sore heads to give the hammers and chisels a rest. A day later, on a very hot afternoon high in the King Leopold Range, we came across a large rock pool of crystal-clear water, well above the crocodile-infested lowland streams. David was first into the water singing excerpts from *The Marriage of Figaro*. Unfortunately, no cameras were permitted! Throughout our 35 years of collegiality, I always found David extremely generous with his praise, enthusiastic, supportive and forever encouraging me to tackle more challenging chemotaxonomic and taxonomic lichenological problems. At the social level David could be elusive, but always hospitable – like the occasion my late wife and I arrived, unannounced, at Millers Flat, central Otago, where David and Patricia were then living (January 1997). Patricia abandoned her fishing and David his Flora-writing to make us particularly welcome!

David died on 6 December, 2014, at the Otago Community Hospice, Dunedin, after a relatively short but severe illness, aged 72 years. He will be sorely missed by his family, especially his wife Patricia, and his many friends and colleagues around the world. Unfortunately, there will be no further email messages “from David in Dunedin”.

Jack Elix

References
INFORMATION FOR AUTHORS

Research papers submitted to Australasian Lichenology must be original and on some aspect of Australasian lichens or allied fungi, and they are refereed. The journal also welcomes newsworthy items on lichenologists who are either studying Australasian lichens or who are visiting the region. A manuscript can be e-mailed to W. Malcolm at <nancym@clear.net.nz> as a text file saved in cross-platform “rich text format” (.rtf). See a recent issue for a guide to text formatting and reference citations.

Drawings should be inked originals, and photographs should be sharp and clear (prints will do but negatives or transparencies are preferred). Drawings and photographs can be air-mailed or else scanned at 600 dpi and then e-mailed as TIFF (.tif) or highest-quality JPEG (.jpg) files.

Australasian Lichenology provides electronic off-prints to authors as .pdf files. The journal does not ordinarily provide hard-copy off-prints, but off-prints of papers with colour plates can be purchased for NZ$2.00 per copy per A5 plate if they're ordered when the manuscript is accepted for publication.

Australasian Lichenology is the official publication of the Australasian Lichen Society, and formerly was named the Australasian Lichenological Newsletter. Its Editorial Board is W.M. Malcolm, J.A. Elix, G. Kantvilas, S.H.J.J. Louwhoff, and P.M. McCarthy.