Population genetics of the invasive honey locust (Gleditsia triacanthos) using AFLP's A comparison between native and invasive ranges

Steve Chivers

CSIRO PLANT INDUSTRY CENTRE FOR PLANT BIODIVERSITY RESEARCH

summer student program

THE AUSTRALIAN PASTORAL RESEARCH TRUST GRAINS RESEARCH & DEVELOPMENT CORPORATION

Grains Research & **Development Corporation**

Biodiversity

Research

What is an invasive species?

- an organism which colonises a new geographic location outside of its native range and disrupts local ecosystems
 - egs. blackberry, Lantana, rabbit
- why are some species capable of invading?
 - escape from enemies/competition
 - life history traits (high reproductive rates, good dispersal capabilities)
- plant specific traits
 - vegetative reproduction
 - generalist pollinator syndrome
 - tolerance of varying environmental conditions

Invasive species and evolution

- population genetic consequences
 - founder effects
 - genetic drift
 - gene flow which arises from high dispersal of seeds and pollen.
- novel selective pressures (evolution of different traits)
 - the evolution of different traits
- Therefore, microevolutionary changes and macroevolutionary changes

Honey locust as an invader in Australia

- dioecious, leguminous tree native to the US
 - floating seed pods (dispersal)
 - edible seed pods (dispersal)
- ~30 seeds/pod, lots of pods
- short generation time (3-5 years)
- generalist pollination syndrome
- often utilised by people

Honey locust as an invader in Australia

Queensland

- 1907 first plantings by McConnel
- 1955 noticed as a pest in Esk Shire ("McConnel's curse")
- 1993 declared a noxious weed
- 1994 eradication begins

• NSW

- mid-20th Century plantings in NSW (Camden Park)
- no eradication program
- Canberra
 - planted as a street tree
 - new populations along Molongolo River

Predictions

- Why study the honey locust?
 - a successful invader with known history
 - clear population genetic predictions
- QLD populations will have lower genetic diversity than U.S populations
 - the founder effect
- QLD populations will be genetically similar to each other
 - gene flow between populations
- QLD populations will be genetically similar to US populations
 - limited time for changes to occur

Distribution in the United States

South East Queensland

Cherbourg (n=23)

Toowoomba 3 (n=26) Toowoomba 2 (n=25)

Warwick 2 (n=6)

Toowoomba 1 (n=21)

B duffsland Britebane, Britebane

Warwick 4 (n=23)

Warwick 3 (n=14)

Warwick 1 (n=21)

Amplified Fragment Length Polymorphism (AFLP)

Genetic diversity within populations

UPGMA dendrogram

Principle Coordinates Analysis

Summary of results

- low levels of diversity in all populations
 - consistent with predictions of low genetic diversity in Australian populations
 - inconsistent with predictions for US populations
- QLD populations are genetically similar
- native and invasive populations are genetically similar
- Conculsion: little microevolutionary change in invading populations

Future Directions

- conduct analyses on more populations over a wider geographical area
 - more populations from the US
 - include NSW populations
- reanalyse loci, increase number of loci

Acknowledgements

- Joe Miller (Supervisor)
- Andy Schnabel (Supervisor)
- Wang Xueqin (AFLP methodology)
- Ish Sharma (Lab techniques)
- Kristy Lam (Lab techniques)
- Rest of the Herbarium Staff
- CSIRO Plant Industry

